Week3 learned:
➔ Conjunction: AND, ∧, ∩
➔ Disjunction: OR, ∨, ∪
Negation
note: the negation sign should apply to the smallest possible part of the expression.
use parentheses properly to avoid ambiguity
Truth Table
lieu of Venn Diagram when predicates are too many (more than 2)
#of rows = 2^(#of predicates)
can be used to:
-evaluating expressions: T or F
-determining satisfiability:
P ∧ Q : satisfiable P ∧ ¬P:contradiction P ∨ ¬P:universal truth(tautology)
-proving equivalent: we get "P => Q" is equivalent to "(NOT P)
∨ Q"
Some important laws
-Commutative Law
P
∧ Q <=> Q
∧ P
P
∨ Q <=> Q
∨ P
-Associative Law
P
∧ (Q
∧ R) <=> (P
∧ Q) ∧R
P
∨ (Q
∨ R) <=> (P
∨ Q)
∨ R
-Distributive Law
P
∧ (Q
∨ R) <=> (P
∧ Q) ∨ (P
∧ R)
P ∨ (Q
∧ R) <=> (P
∨ Q)
∧ (P
∨ R)
- De Morgan's Law
NOT(P ∨ Q)<=> NOT P ∧ NOT Q vice versa
- Identity Law
P
∧ (Q
∨ NOT Q) <=> P <=> P
∨ (Q
∧ NOT Q)
- Indempotent Law
P
∧ P <=> P <=> P
∨ P
没有评论:
发表评论